

Year 11 Mathematics Specialist Test 3 2022

Calculator Assumed
Circle Geometry & Proof

STUDENT'S NAME

MARKING KEY

[KRISZYK]

DATE: Wednesday 11th May

TIME: 50 minutes

MARKS: 43

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser.

Scientific Calculator

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Prove by contradiction the statement "No integers a and b exist for which 24a+12b=1"

Suppose 24a and 12b can add to give 1.

$$[24a + 12b = 1] \div 12.$$

$$2a + b = 1$$

Since the sum of integers a and b is a fraction and the sum of two integers cannot yield a non-integer

- : statement cannot be proven false
- :. statement is true.

2. (8 marks)

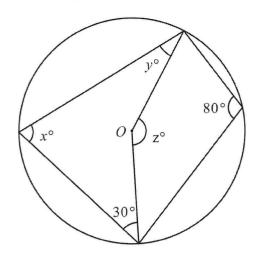
(a) For each of the following statements, state whether they are always true or sometimes false. Support each answer with an example.

(i) If
$$P \Rightarrow Q$$
 then it follows that $Q \Rightarrow P$. [2] False

If $\chi = 2$ then $\chi^2 = 4$ but if $\chi^2 = 4$ the $\chi = \pm 2$

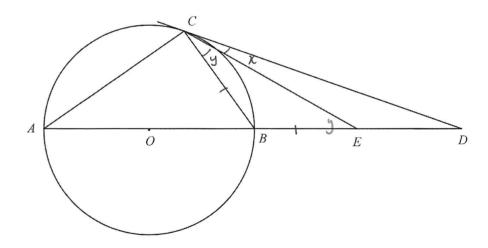
(ii) If
$$P \Leftrightarrow Q$$
, then it follows that $Q \Rightarrow P$ and $P \Rightarrow Q$. [2] True

If $2x = 6$ the $x = 3$


(iii) If
$$P \Rightarrow Q$$
 then it follows that $\overline{P} \Rightarrow \overline{Q}$. [2] False If $x = 2$ the $x^2 = 4$ but if $x \neq 2$ x^2 can still equal 4 when $x = -2$.

(b) If $B \Rightarrow A$ is a true statement, write a statement which relates to A and B which will be always true. [2]

$$\overline{A} \Rightarrow \overline{B}$$

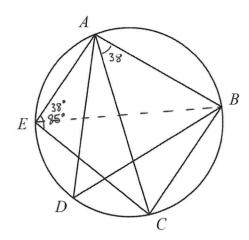

3. (3 marks)

In the diagram below determine the values of x, y and z.

4. (3 marks)

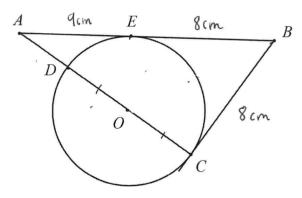
Triangle ABC is inscribed in a circle with AB as a diameter. The tangent at C meets AB produced at D, the point E is on the line BD such that BE = BC. Given that $\angle DCE = x^{\circ}$ and $\angle BCE = y^{\circ}$.

Calculate, in terms of x and y only, the angles CEB, CBA and CAB.


$$\angle CEB = y$$
 $\angle CBA = 2y$ or $90 - x - y$
 $\angle CAB = 90 - 2y$ or $90 - (90 - x - y)$
 $= x + y$

5. (7 marks)

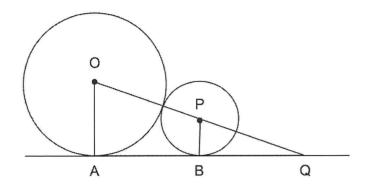
(a) In the diagram below $\angle AEC = 85^{\circ}$ and $\angle BAC = 38^{\circ}$. Determine the size of $\angle ADB$.


(Show all relevant angles on the diagram below)

Draws line EB / Calculates LAEB /

(b) In the diagram shown below, not drawn to scale, a circle with centre O has tangents at E and C that meet at B. If the length of BC is 8 cm and the length of AE is 9 cm, determine the length of DC. [4]

From
$$\triangle ABC$$
: $AC^2 = 17^2 + 8^2$
 $AC = 15$


$$AC \times AD = AE^2$$
 (square of tangent = product of intercepts)
 $AC \times AD = 9^2$
 $AD = 5.4 \text{ cm}$

.. DC =
$$15-5.4$$

= 9.6 cm

Page 4 of 8

6. (6 marks)

Two circles are tangent to a line and to each other, as shown in the diagram below. The radius of the larger circle is twice the radius of the smaller circle.

(b) Show that
$$PQ = 3r$$
 where r is the radius of the smaller circle.

PB = r

$$0A = 2r$$

 $OP = 3r$
By Similarity $\frac{OQ}{PQ} = \frac{OA}{PB} = \frac{2r}{r} = 2$
 $OQ = 2PQ$ hence $PQ = OP = 3r$

(c) Determine the radius of the smaller circle given that AB = 20 cm.

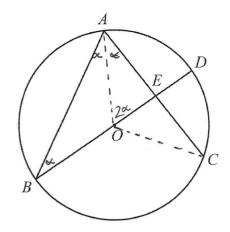
$$BQ = AB = 20$$

$$3r^{2} = r^{2} + 20^{2}$$

$$8r^{2} = 400$$

$$r^{2} = 50$$

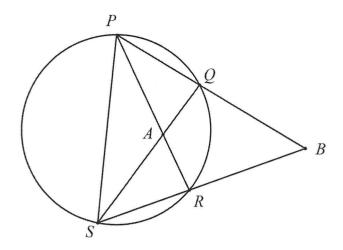
$$r = 5\sqrt{2}$$


[2]

[2]

[2]

7. (7 marks)


Consider the diagram below. $\triangle ABC$ is isosceles with AB = AC and BOD is a diameter where O is the centre of the circle.

Prove $\angle AED = 3 \times \angle ABD$.

8. (6 marks)

The points P, Q, R and S lie on a circle of radius r. PR and QS meet at A. PQ and SR are produced to meet at B, and AQBR is a cyclic quadrilateral.

Prove that BS is perpendicular to PR.

Q.E.D.